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ABSTRACT

Recently CNN with nonlinear weight functions are used for various problems. Thereby nonlinear weights are
represented by polynomials or tabulated functions combined with a cubic spline interpolation.
In this paper a linear interpolation technique is considered to allow an accurate approximation of nonlinear
weight functions in CNN. In a previous publication the Table Minimising Algorithm (TMA) was introduced and
applied to the Korteweg-de Vries-equation (KdV). In this contribution new results obtained by applying the
algorithm to additional partial differential equations (PDE) will be given and discussed.
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1. INTRODUCTION

Over the past years the importance of system identification by CNN has been shown in different investigations.1, 2

Tabulated functions combined with a cubic spline interpolation have been introduced and analysed in detail
for different cases.3 First results2 reveal that using linear interpolation on tabulated nonlinear functions is
practicable and reasonable for a representation of non-linearities in CNN. In this contribution a more detailed
analysis of this procedure will be given including cases which are sensitive to parameter variations. In the following
the Burgers equation and the Φ4-equation are investigated as two examples for nonlinear partial differential
equations (PDE), which have been already represented by polynomial CNN.4

Firstly, the linear interpolation approach is introduced followed by results for the Burgers equation and Φ4-
equation.

2. METHODS

As already shown4 nonlinear PDE can be represented by CNN with polynomial weight functions. In order to
identify a nonlinear spatio-temporal system by a CNN, it is necessary to determine an accurate representation
of the network weight function. Especially a mostly calculation efficient approximation may be useful allowing
an application of the identification procedure on CNN based programable electronic devices. In this paper CNN
with the state equations
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o(sk(t)) the identity is chosen. The input uk, the bias q and the conductance are set to zero, which results in a
state equation of an autonomous CNN. Therefore the state equation
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follows with the polynomial feedback function

ak (sk(t)) =
D∑

k≥0

pa,i,ksk(t)k , (3)

where D denotes the polynomial order. Usually, the polynomial weights will be determined in a comparison of
the CNN state equation to the discretised form of the considered PDE.4 Hereby, a linear interpolation method is
applied for these functions to obtain an accurate but mostly calculation efficient representation form. Therefore
we applied the Table Minimising Algorithm (TMA).2 The TMA supports two arbitrary parameters, a maximal
acceptable error ε and a window of size R, which must be appropriately chosen.

2.1. Burgers equation

A well known PDE is the Burgers equation5

∂f(x, t)
∂t

=
∂f(x, t)2

∂x
+

∂2f(x, t)
∂x2

, (4)

which is often used to model one dimensional flow processes. An analytical solution is given by

f(x, t) =
v1 exp(−v1(x− x01 − v1t)) + v2 exp(−v2(x− x02 − v2t))
1 + exp(−v1(x− x01 − v1t)) + exp(−v2(x− x02 − v2t))

. (5)

Two soliton waves – with initial positions x01, x02 and velocities v1, v2 – which merge at time

t =
x02 − x01

v1 − v2
(6)

are modeled by this solution.
In order to allow an identification by CNN it is necessary to perform a spatial discretisation. Therefore the
spatial derivations have been substituted by the difference quotients. This leads to

∂f(xi, t)
∂t

=
f(xi−1, t)2 − f(xi+1, t)2

2h
+

f(xi−1, t)− 2f(xi, t) + f(xi+1, t)
h2

, (7)

with the spatial discretisation width h. The template

1.0s + 0.5s2 −2.0s 1.0s− 0.5s2

results from Eqn. (7) with h = 1. The obtained nonlinear template with polynomial elements is an approximative
representation of Eqn. (4) using CNN.
The determination of approximative solutions of certain PDE by calculating output activities of CNN following
the above mentioned procedure has been treated in a lot of network simulations.6, 7 Especially representing
arbitrary nonlinearities in programable electronic devices is still an open problem. Tabulation and interpola-
tion3 to model arbitrary nonlinearities may be one possible solution. In this contribution a linear interpolation
procedure and the TMA are used for the Burgers equation as well as for the Φ4-equation.

2.2. Φ4-equation

The Φ4 equation5 is given by

∂2f(x, t)
∂t2

=
∂2f(x, t)

∂x2
+ f(x, t)3 − f(x, t) . (8)



One type of solution which describes a kink-antikink – f+ denotes the kink and f− the antikink – wave collisions
is

f±(x, t) = ± tanh


x− v±t− x0±√

2(1− v2±)


 , (9)

with initial positions x0+, x0− and velocities v+, v−.
Due to the fact that Eqn. (8) contains the second order derivation of time, we consider the form derived by the
method of substitution8

w(x, t) =
∂f(x, t)

∂t
(10)

∂w(x, t)
∂t

=
∂2f(x, t)

∂x2
+ f(x, t)3 − f(x, t) , (11)

which – after spatial discretisation – can be represented by a two layer CNN. For the Φ4-equation the sensitivity
to certain initial conditions has already been shown.4 In this paper the templates of a Φ4-equation representing
CNN have been obtained in a parameter training. The achieved templates are

from layer 1 to layer 2 27.96638s −55.49913s− 0.43353s3 27.96638s

from layer 2 to layer 1 0.5002

The further procedure is the same as for the Burgers equation described in section 2.1.

3. RESULTS

The results obtained by applying the above given method and the Table Minimising Algorithm (TMA) will be
discussed in the following. The polynomial representation of the weights is given as a reference.

3.1. Burgers equation

The initial state loaded into the cells of the CNN has been calculated using Eqn. (5) with the parameters x01 = 25,
x02 = 75 and v1 = 2, v2 = −1. In Fig. 1 the solution of Burgers equation using a polynomial representation is
given, where two propagating wave fronts are shown. For a tabulated representation using a linear interpolation
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Figure 1. Burgers equation using a polynomial representation of the weight functions

of 650 equidistant sample points of the CNN feedback functions we obtain the solution shown in Fig. 2. In this
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Figure 2. left: Solution of Burgers equation using a tabulated representation with 650 equidistant sample points for the
weight functions; right: Difference of the solution obtained by a tabulated representation with 650 sample points to the
reference solution in Fig. 1

case only small differences to the reference solution in Fig. 1 occur, which are caused by small differences in
velocity of the propagating wave fronts in the two compared cases.
After using the TMA2 with the settings ε = 0, 1 and R = 50 only 14 non-equidistant sample points for weight
functions remain, which is a considerable reduction of the calculation complexity compared to the equidistant
tabulated weight function. The obtained solution and the differences to the reference solution are shown in
Fig. 3.
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Figure 3. left: Solution of Burgers equation using a tabulated representation applying a TMA with 14 non-equidistant
sample points for the weight functions; right: Difference of the solution obtained by a tabulated representation applying
a TMA with 14 non-equidistant sample points for the weight functions to the reference solution in Fig. 1

3.2. Φ4-equation

The initial state loaded into the cells of the CNN has been calculated using Eqn. (9) with the parameters
x0+ = 24, x0− = 40 and v+ = 0.1, v− = −0.25. In Fig. 4 a solution of Φ4-equation using the polynomial
representation is given. As already mentioned the shape of certain Φ4-solutions depend sensetively on the initial
conditions. Thus a special case is considered in this paper. In order to determine precise approximations of the
reference solutions obtained with the polynomial CNN, a linear interpolation procedure with 1000 equidistant
samples has been applied leading to the results which are given in Fig. 5.
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Figure 4. Solution Φ4-equation using a polynomial representation of the weight functions
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Figure 5. left: Solution of the Φ4-equation using a tabulated representation with 1000 sample points for the weight
functions; right: Difference of the solution obtained by a tabulated representation with 1000 sample points to the reference
solution in Fig. 4
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Figure 6. left: Solution of the Φ4-equation using a tabulated representation applying a TMA with 744 sample points
for the weight functions; right: Difference of the solution obtained by tabulated representation applying a TMA with 744
sample points for the weight functions to the reference solution in Fig. 4



Although, by using the TMA with ε = 0, 000001 and R = 20 the above given high number of samples decreased to
77%, this is still a considerable calculation complexity necessary for the linear interpolation of weight functions.
In Fig. 6 the achieved result and the error are given. The obtained error is comparable to the error achieved
with equidistant tabulated version.

4. CONCLUSION

The results of our investigations clearly show that the tabulated representation of nonlinear weight functions
leads in all treated cases to accurate approximations of solutions obtained from different PDE. For the Burgers
equation a considerable reduction of sample points could be achieved. For the more complex case of the Φ4-
equation it was shown that also a reduction of samples is obtained, nevertheless there is still a considerable
calculation complexity compared to the Burgers equation. In further investigations a parameter training will be
applied to obtain a tabulated representation of weight functions using a linear interpolation.
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