
Linear interpolation of nonlinearities in Cellular Neural Networks
(CNN)

Gunter Geis, Michael Reinisch, Ronald Tetzlaff, Frank Puffer

Institute of Applied Physics Johann Wolfgang Goethe University Frankfurt / Main

ABSTRACT: During the past few years an increasing number of re-
searchers have started to investigate CNN with nonlinear weight functions
for various applications. In different investigations nonlinear weights are
represented using polynomials or a tabulated form combined with a cu-
bic spline interpolation procedure. In this contribution we propose a new
method for representing nonlinearities in CNN by using a linear interpola-
tion technique.

1. Introduction

Recently in different investigations CNN with nonlinear weight functions are considered for
various applications [1], [2], [3]. In order to enable a parameterised representation of a broad
class of nonlinearities, polynomial approximations [4], [5] and tabulated functions combined
with a cubic spline interpolation [6], [7], have been introduced and analysed in detail for differ-
ent cases. Although, the results of these studies show, that generally a precise representation can
be obtained, complexity reduced methods are preferable especially for CNN-UM realizations.
In this contribution a new linear interpolation procedure leading to a accurate representation,
also of strong nonlinearities, is proposed and discussed in detail. Therefor firstly a standard
linear interpolation with equally spaced samples is applied. Secondly for a certain maximum
approximation error redundant samples are eliminated leading finally to a representation with
non-equidistant samples. In section 2. the interpolation algorithm, which is a kind of greedy
algorithm, is introduced followed by results in section 3. and 4. obtained for nonlinear wave
solutions of an one-dimensional Korteweg-de Vries equation.

2. The Table Minimising Algorithm (TMA)

For an elimination of samples in a linear interpolation as far as possible fullfilling an errorε
constraint, we use a kind of a greedy algorithm which is in general defined by [8] as:

Definition 1 (greedy algorithm). An algorithm that always takes the best immediate, or lo-
cal, solution while finding an answer. Greedy algorithms find the overall, or globally, optimal
solution for some optimisation problems, but may find less-than-optimal solutions for some
instances of other problems.

Such algorithms are much faster than algorithms that always finds the global extremum. The
deviation compared to an global optimisation algorithm is in most cases negligible. We would
like to describe the used algorithm on the basis of an example as shown in Fig. 1. As input the
greedy algorithm needs, apart from the equidistant sample pointsxi and their function values, a

Figure 1: Example of non equidistant interpolation using an greedy algorithm

maximal acceptable errorε and a window of sizeR. For a given tabulated functionyi = y(xi)
with N sample points the algorithm iteratively runs from a found pointxi – at the beginning the
first x1 – to the farthest next point fulfilling an error constraint, and at the end to the last sample
point. In each step simply a linear representationgk according to

gk =
yi+R − yi

xi+R − xi

xk − yi+R − yi

xi+R − xi

xi − yi with (1)

k = i + R− 1, i + R− 2, . . . , i + 1

is taken in the interval[xi, xi + R]. Each sample point in betweenxi andxi + R is considered
if the error

e = |yk − gk| ∀k = i + R− 1, i + R− 2, . . . , i + 1 (2)

betweengk and the given functionyk does not exceed the givenε for each sample point. Then,
the next interval is considered by settingxi = xi +R, and all sample points between the former
xi andxi + R are removed. If not,R is decremented for this partial step and the process is
started again. Finally, ifxi +R would exceed the end of the table, the last sample point is taken.
Summarising, a sample point will be taken, which has the largest distance toxi still leading to
an errore smaller thanε for all points in between. Thus, the number of sample points taken for
the linear interpolation is minimised.
It should be noted that the obtained solution is not optimal, due to the fact that not all combina-
tions are evaluated, since the program stops as soon as a suitable sample point has been found.
In a more general examination it may occur that one could eliminate more points in a further
step by checking other combinations which also fulfil the error constraint. An example is shown
in Fig. 1; regarding the positionxi = 2, i.e. y(2), the algorithm stops aty(4) owing to the result
thate < ε and the next found sample point lies inevitably aty(5). If instead one would go to
y(3), the pointy(6) would be the next; and thus requires one sample point less. Although, the
general procedure may lead in some cases to improved performance, the substantial reduction
of the computing complexity by applying the proposed greedy algorithm is attractive for several
applications in practice. For the so-called computation costsT (N) [9] follows T (N) = O(N2)
in a general optimization procedure. By applying the greedy algorithm only the worst-case

reachesT (N) = O(N2). In the ’best-case’ it followsT (N) = N − 1 and in the ’average-case’
T (N) = O(N). However, in the optimal solution case there is always the complexity as given
above for the general optimization procedure.

3. Linear interpolation of nonlinear functions

The performance of the TMA has been evaluated in several cases, a typical result is given
below. Since this algorithm may be used to reduce the representation complexity of a given
tabulated function, it could be applied by adaptingR for a given errorε. In the following Fig. 2
the numbers of remaining sample points vs. the errorε (absolute) and the window sizeR (in
sample points) are given for the polynomial

y(x) = 1.0x + 50.0x2 − 17.0x3 (3)

which is tabulated withN = 100 equidistant samples in the interval[0, 5].

 0

 20

 40

 60

 80

 100

 window size R
 0

 10
 20

 30
 40

 50
 60

 70
 ε

 0

 5

 10

 15

 20

 25

 30

 remaining samples

Figure 2: Remaining sample points vs.ε andR

Significant changes of remaining points can only be observed for small values ofε. By de-
creasing the window sizeR, more sample points remain in the resulting table. This follows
because in the best case, for a given window sizeR all sample points betweenxi andxi + R
are removed, so decreasingR leeds finally to one point per window. In Fig. 3 a typical result of
the TMA for ε = 20 andR = 50 is shown which is compared to the functiony(x) of Eq. 3 and
the corresponding absolute error valuese for each sample point are given. It is evident that the
error increases between remaining function valuesy(x) up to the maximum acceptable value
ε. It can be observed (marked with a rectangle) that aboutx = 0.5 the error takes the value
e = 0.0, because the curve of the function approximation obtained in a linear interpolation with
non equidistant points show a crossing of the function curvey(x).

−900
−800
−700
−600
−500
−400
−300
−200
−100

 0
 100

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

y

x

 0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

a
b
s
o
l
u
t
e

e
r
r
o
r

e

x

Figure 3: Result of the TMA by approximatingy(x) given in Eq. (3) forε = 20 andR = 50
(left side) the interpolation result is compared toy(x) (right side) approximation errore vs.x

4. Nonlinear weight functions of CNN

We present in the following first results using the TMA by representing nonlinear weight func-
tions in CNN templates. Hereby autonomous CNN with statess(t) and cell outputso(t) =
id(s(t)) are defined by the state equation

dsi(t)

dt
= −csi(t) + q +

∑

j∈N (i)

aj−i (oi(t), oj(t)) (4)

with the neighbourhoodN (i) and the polynomial weights

aj−i (oi(t), oj(t)) =
∑

k+l≤D
k≥0,l≥1

pa,j−i,k,l(oi(t))
k(oj(t))

l (5)

The Korteweg-de Vries-equation (KdV equation)[10], [11]

∂u(x, t)

∂t
= 2

∂3u(x, t)

∂x3
− ∂u2(x, t)

∂x
(6)

is a nonlinear partial differential equation. For simulating the KdV it is necessary to perform a
spatial discretisation of Eq. (6) . We can approximate the two spatial derivatives as

∂3u(x, t)

∂x3
≈ u(xi+2, t)− 2u(xi+1, t) + 2u(xi−1, t)− u(xi−2, t)

2(∆x)3
(7)

∂u2(x, t)

∂x
≈ u2(xi−1, t)− u2(xi+1, t)

2∆x
. (8)

Substituting Eq. (7) and (8) into Eq. (6), we obtain the following equation:

∂u(xi, t)

∂t
≈ u(xi+2, t)− 2u(xi+1, t) + 2u(xi−1, t)− u(xi−2, t)

(∆x)3

−u2(xi−1, t)− u2(xi+1, t)

2∆x
(9)

−1.0s 2.0s− 0.5s2 0.0 −2.0s + 0.5s2 1.0s

Table 1: KdV template function

In the following investigations the template given in Table 1 is used, which results from Eq. (9)
for ∆x = 1, and is considered for a one dimensional CNN with 128 cells. Fig. 4 represent the
initial state of the CNN. In the simulation the 4-step Runge-Kutta method is used. In Fig. 5 the
states of the CNN after 30000 simulation steps are shown. On the left side the results represent
the states of the CNN solving the KdV equation using above mentioned weights. In the middle

−0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100 120

Figure 4: Initial state used in the simulation of the KdV Eq. (9).

part of Fig. 5 a CNN solution obtained by using linear interpolated weights in[−50, 50] with
equidistant points having a step size of∆t = 0.01. On the right side the results which has

−0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100 120
−0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100 120
−0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100 120

Figure 5: Left side: KdV equation using a polynominal representation for the weights; middle:
using equidistant tabulated representation for the polynominal weights; and right side: CNN
solution calculated using the reduced tabulated weights.

been obtained using a reduced tabulated version of the polynomial nonlinearity evaluated by
means of the TMA taking an absolute error ofε = 3.0 and a window size ofR = 20. As
compared to the linear approximation wDocumentsithNlin equidistant points, the application
of the TMA led to weight function representation withNTMA non equidistant points giving a
factor Nlin

NTMA
≈ 20.

5. Conclusions

We have shown in this paper that the application of the table minimising algorithm lead in all
treated cases to a precise representation of nonlinear functions by using a linear interpolation
of a small number of non-equidistant points. It is obvious that an implementation of such an
linear interpolation algorithm is flexible with a low complexity and possibly solve the problem
of finding a parametrised representation of nonlinear weight functions in CNN.

References

[1] Mika Laiho, ”Mixed-Mode Cellular Array Processor Realisation for analyzing Brain Elec-
trical Activity in Epilepsy”, Helsinki University of Terchnology, Electronic Circuit Design
Laboratory, 2003.

[2] R. Kunz, R. Tetzlaff, ”Spatio-Temporal Dynamics of Brain Electrical Activity in Epilepsy:
Analysis with Cellular Neural Networks (CNN)”, Journal of Circuits, Systems and Com-
puters, in print.

[3] D. Feiden, R. Schoenmeyer, R. Tetzlaff, ”On-Chip template Training for Pattern Matching
by Cellular Neural Networks Universal Machines” ISCAS 2003, Bangkok, 2003.

[4] F. Puffer, R. Tetzlaff, D. Wolf, ”A Learning Algorithm for the Dynamics of CNN with
Nonlinear Templates Part II: Continuous-Time Case”,4thCNNA’96, Seville, pp. 467-472,
1996.

[5] F. Puffer, R. Tetzlaff, D. Wolf,Documents ”Cellular Neural Networks with Nonlinear
Weight Functions – Applications to Texture Classification” European Conf. on Circuit
Theory and Design, Budapest, 1997

[6] R.Tetzlaff, A. Loncar, D.Wolf, ”Modeling Chaotic Systems by Cellular Neural Network”,
ICNF’99, Hong Kong, 1999.

[7] A. Loncar, R.Tetzlaff ”Cellular Neural Networks with nearly arbitrary nonlinear weight
functions”,6thCNNA’00, Seville, 2000.

[8] National Institute of Standards and Technology ”Dictionary of Algorithms and Data Struc-
tures”, http://www.nist.gov/dads/HTML/greedyalgo.html

[9] T.H. Cormen, C.E. Leiserson, R.L. Rivest, ”Introducing to Algorithms”, MIT Press Cam-
bridge Massachusetts, 1999.

[10] F. Puffer,R.Tetzlaff, D.Wolf, ”A Learning Algorithm for Cellular Neural Networks (CNN)
solving nonlinear Partial Differential Equations” ISSSE’95, San Francisco, pp. 105-405,
1995.

[11] F. Puffer,R.Tetzlaff, D.Wolf, ”Modeling Nonlinear Systems with Cellular Neural Net-
works”, ICASSP’96, Atlanta , pp.3513-3516, 1996.

